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Summary
Advances in artificial intelligence have impacted several areas of everyday life, as well as in the 
area of medicine. Due to the rapid application of deep learning in biomedical data, radiological and 
nuclear imaging has begun to adopt this technique. Deep learning is expected to have an effect 
on the process of image acquisition and interpretation, as well as on decision making. This review 
first provides an overview of the basic concepts and operation of convolutional neural networks, 
as well as current insights into the medical application focused on diagnostic imaging.

Resumen
Los avances en la inteligencia artificial han repercutido en varios espacios de la vida cotidiana, así 
como en la medicina. En vista de la rápida aplicación del aprendizaje profundo —conocido como 
Deep Learning— en los datos biomédicos, las imágenes radiológicas han comenzado a adoptar 
esta técnica. En lo que respecta, se espera que el aprendizaje profundo tenga un efecto en el 
proceso de adquisición e interpretación de imágenes, así como en la toma de decisiones. Esta 
revisión ofrece en primer lugar una descripción general del funcionamiento de las redes neuronales 
convolucionales, los conceptos básicos de estas, y las perceptivas actuales en la aplicación médica 
centrada en imágenes diagnósticas.

Abbreviations: artificial intelligence (AI); deep learning (DL); convolutional neural networks (CNN); ImageNet 
large-scale visual recognition competence (ILSVRC); computed axial tomography (CAT); reduction layer (max 
pooling); dense layers (fully connected). (TAC); capa de reducción (max pooling); capas densas (fully connected).

Introduction
The concept of artificial intelligence (AI) has been 

developing since the 1950s, although technological 
limitations in the early years meant low performance 
compared to humans. Today, with the rapid progression 
of algorithm design, the growth of digital data sets, 
and the development of computational capability, AI 
has the potential to outperform humans in many tasks. 
Consequently, its potential exploration in the last ten 
years has increased in the medical field, especially in 
diagnostic imaging.

Deep learning, known as Deep Learning (DL), is 
considered by many to be an integral part of the fourth 
revolution (1). It investigates the use of artificial neural 
networks with an algorithm inspired by the structure 
and function of the human brain, by recognizing or 
categorizing hierarchical images of data distributed 
in multiple layers composed of simple and nonlinear 
modules, thus performing data transformation for dis-

crimination. Convolutional Neural Networks (CNNs) 
are the most important DL model at present (2).

CNNs have their origins in the neocognitron propo-
sed by Fukushima et al. (3), whose idea was based on 
the biology of human primary visual cortex recognition 
investigated by Hubel and Wiesel (4). These CNNs 
consist of multiple artificial neurons (Figure 1). The 
rise in popularity of CNNs was secondary to the victory 
obtained in the ImageNet large-scale visual recogni-
tion competition (ILSVRC) in 2012 (5). At this event, 
Krizhevsky and Hinton (5) developed a CNN called 
AlexNet, which outperformed other competing machine 
learning techniques. Today, that CNN is considered 
one of the leading influencers in image analysis (6, 7). 
Since then, many image recognition and classification 
models have been developed based on this DL model.

Initially, the development of DL was slow due to 
the fact that medical data were not well structured and 
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labeled; however, the number of reports on the application of this 
model in clinical data has increased rapidly in recent years (8). Its 
current application includes the segmentation and classification of 
pathological processes. Medical research studies using CNN have 
been developed in multiple fields, such as in the detection of diabetic 
retinopathy (9), for the classification of skin lesions (10) or for the 
detection of lymph node metastases (11). In radiology, countless 
studies have been published with applications of CNN (6, 12) ranging 
from the detection of pulmonary nodules using chest X-rays (13) or 
computed axial tomography (CT) (14), classification of pulmonary 
nodules (15), detection and classification of masses in mammography 
(16, 17) and the application in cardiology and cardiac imaging (18).

The aim of this article is to clarify the order of the basic concepts 
of CNNs, in such a way that it allows an approach to the subject and 
can be a guide for those who wish to go deeper into the subject. A 
review of the literature was carried out, providing the most relevant 
definitions and the application of AI in the activity of the radiologist 
and nuclear physician in order to support clinical decisions in the 
near future.

1. Function of a Convolutional Neural 
Network

CNNs applied to diagnostic imaging seek to act in a manner very 
similar to the primary visual cortex of the human brain. Humans 

classify and differentiate perfectly between multiple objects, given 
the ability to distinguish various features, such as color, edges, 
curves, shadows; that is, they focus on everything that allows them 
to distinguish or classify each object individually. For that reason, 
many of these systems attempt to mimic the functioning of neurons 
in the visual cortex (4, 19) (Figure 2).

CNNs operate on both 2D and 3D images and are typically 
made up of three layers: convolution layer, max pooling layer and 
fully connected layers (Figure 3), of which the first two carry out a 
feature extraction phase, while the latter two (fully connected) are 
in charge of performing the classification phase (20).

The first layers allow the CNN to perform a feature extraction 
phase, which acts in a similar way to the human brain when searching 
for those types of features that define an object. In the classification 
phase or the regression phase that is performed on the dense layers, 
all the features already extracted are related and a classification is 
obtained directly (20). For example, a CNN is created and trained to 
detect dogs. The first phase (convolution and max pooling) extracts 
the main features of a dog-the coat, the color, the shape the dog has. 
The second phase (fully connected) uses all the extracted features 
and can tell whether what is in the image is a dog or not. CNNs 
establish relationships between the different pixels of an image, 
looking for relationships in it, and that allows them to have a much 
more general context with spatial coherence.

Figure 1. General scheme of an artificial 
neuron.

Source: own elaboration.

Figure 2. Artificial neuron. The basis of artificial neural networks is inspired by the biology of neurons and their connections. We can see what 
could be called “artificial neuron” and how it tries to follow the same architecture of a biological neuron.

Source: own elaboration.

(A) Inputs: data or input values. A1 is input 1.
(W) Weight: is the importance of input 1 on the behavior of neuron J.
J: Neuron J.
J: activation function, it gives a non-linearity to the response of the neuron, important 
when classifying the information and generating a response.
(YJ) Output: response of neuron J.
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2. Key concepts of neural networks

2.1. Pixels and neural networks

Pixel: A single point or small square containing color, which can 
be white, black or shades of gray in the case of diagnostic images, and 
is part of a digital image (Figure 4) (20).

Kernel: Known as feature detector, filter or “property detector”, 
it is a matrix of numbers used to focus, blur, record, detect edges and 
image features (20).

Preprocessing: A digital image is a matrix stored in the computer 
where, in the case of grayscale images (radiological images), each pixel 
is represented by a value ranging from 0 (dark shades) to 255 (light or 
bright shades). The normalization of the data refers to the division of the 
pixel value into 255. This transformation assigns pixel values between 0 
and 1 (21), which reduces the computational load and generates a better 
neural network with greater learning agility, which will be reflected 
positively in the image predictions (Figure 5).

3. Operation of the CNN

3.1. Convolution layers
What convolution does is that through a filter (kernel) that is applied 

to the image, it allows to extract certain features. So, if you have for 
an image a filter that allows to detect edges, what you will see in the 
convolution is an image like figure 6 . The general idea of convolution is 
to apply a pattern to an image, in order to extract certain characteristics 
or patterns within that image (7).

To understand the mathematical operation (Figure 7) a simple 6 
× 6 pixel image was drawn, on the right side you see a kernel or filter 
that has a vertical orientation with a size of 3 × 3 (Figure 7). Generally, 
the filter has a smaller size than the image. The idea of convolution is 
that this filter moves through the image and as it does so it performs a 
series of operations, thus generating a map with the features of greater 
weight or importance.

It is an iterative process, in the first iteration what the convolution 
does is to multiply point by point the coefficients of the filter by the 
portion of the image that is under that filter (corresponding pixels of 
the portion of the image) and then the values are added to generate the 
corresponding pixel in the output image. On the right side you see the 
output image and this first pixel resulting from multiplying the filter 
coefficients by the corresponding values of the image. In the second ite-
ration, exactly the same operation is performed with the only difference 
that the filter moves one position to the right and here the next output 
pixel is obtained, and so on, successively. When it reaches the right 
end, the kernel moves down one position and returns to the left side and 
repeats the same operations until the kernel sweeps the entire image, 
thus obtaining the resulting image to then go to the reduction layer.

3.2. Max pooling layer or reduction layer
The reduction layer is the second layer of the CNN and is respon-

sible for reducing the data flow obtained from the convolution layers, 
extracting the most important information or the most important 
features of the convoluted image (22) (Figure 8); this layer reduces 
the computational load that the CNN will have, helping the network 
to better train and segment which are the most important features, to 
remove noise from the image.

If the max pooling is exceeded, not only noise will be removed, 
but also important features could be eliminated, so this layer should 
not be abused. Ultimately, the purpose of these layers is to reduce the 
image size while preserving the main features (higher activations) of 
the convolved image.

The resulting image after convolution and reduction will be smaller, 
with its main features, a cleaner image in the computational context 
compared to the input image. In this case, we started with a 4×4 image 
and obtained a 2×2 image on the right side (22, 23).

Figure 3. Architecture of a convolutional neural network. Starting layer (input image).

Source: own elaboration.
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Figure 4. Diagram of a pixel.

Source: own elaboration.

Figure 5. Preprocessing.

Source: own elaboration.

Figure 6. Convolution

Source: own elaboration.
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Figure 7. Kernel function: the resulting image will be smaller with features 
that outweigh the input image. In this case, we started with a 6×6 image 
and obtained a 4×4 image on the right side; the same operation is repeated 
until the kernel sweeps the whole image.

Source: own elaboration.

Figure 8. Convoluted image of the previous example with a pool or filter size. Its size can vary in one or another neural network. In this example a 
size of 2×2 is imposed, which means that each of the 4×4 pixels of the convolved image is traversed from left-right, up-down, but 2×2 (2 high by 2 
wide = 4 pixels) and the highest value among those 4 pixels will be preserved in the output, hence the term “Max”. In this case, the resulting image 
is halved to obtain a 2×2 pixel image. In this way, the number of neurons needed to continue storing the most important information to detect the 
desired features is also decreased.

Source: own elaboration.
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3.3 Dense layers or classification layers (multilayer 
or fully connected neural network):

These layers calculate the score of each class of features extracted 
from the convolution and max pooling layers, relating all the features or 
all the data that have been extracted prior to training the neural network 
to obtain a final classification (24). There are no rules regarding the 
number of fully connected neuron layers to be used in this final block 
of the CNN; however, the literature describes the use of 2 to 4 layers; 
such is the case of LeNet (25), VGG Net (26) and AlexNet which is 
the most influential (5).

Each neuron in the fully connected layer contains a nonlinear 
function and the choice of this will depend on the type of task to be 
performed by the CNN. However, because the classification layers 
are so computationally heavy, other approaches have been proposed 
in recent years. These include the global average pooling layer and the 
average pooling layer, which help to significantly reduce the compu-
tational load (27).

3.3.1. Activation function
It is important to add that activation functions are present in the 

convolution layers and in the fully connected layers. In other words, 
these activation functions are part of the structure of each artificial 
neuron that makes up the aforementioned layers, and are structurally 
very similar to the artificial neuron schematized in Figure 1; thanks to 
this activation function, the neuron - as a functional unit - classifies the 
data collected to obtain a final response (27).

There are several types of activation functions. On the one hand, 
there is the sigmoidal function used in binary classification, as shown 
in Figure 9, which varies between 0 and 1, where 0 is a negative res-
ponse and 1 is a positive response, given in terms of probability (28). 
The sigmoidal operation is understood as follows: if a CNN model 
is used to identify dogs, when the image of a dog is entered into the 
neural network it yields a result of 0.9, very close to 1, therefore, it has 
a probability that the image entered is a dog; otherwise, if the image 
of a cat is entered, the neural network yields a result of 0.2, which is 
close to zero, which would mean that it is not a dog.

Figure 9. Representation of the activation function.

Source: own elaboration.

Figure 10. Training scheme of a convolutional neural network.

Source: own elaboration.
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In the case of a multi-class classification, where there is more than 
one possible output, the soft max function was created, which allows 
obtaining a normalized probability and is an extension of the sigmoidal 
function. Returning to the previous example, if you want to obtain the 
breed of the dog, a neural network model is trained to differentiate four 
possible classes of dogs (Labrador, terrier, bulldog and pincher); the 
output of the neural network will be a probability for each of these dog 
breeds and the sum of all these possibilities will be 1 (29). Therefore, 
the image of a terrier in a trained neural network could give as an an-
swer: terrier 0.9, labrador 0.05, bulldog 0.03, pincher 0.02, the sum of 
the answer is equal to 1. If the neural network gives the highest value, 
in this case 0.9, there is a probability that the dog is a terrier breed.

On the other hand, it has been demonstrated the high efficiency 
and effectiveness of the Rectifier Linear Unit (ReLU) function to de-
velop much deeper networks (Figure 9). It is able to eliminate gradient 
fading (which refers to the learning error in which the network stops 
learning) (5).

There are several improved versions of ReLU with high perfor-
mance for making a CNN. The best known is the leaky ReLU, which 
adds a small gradient in that negative area, to prevent all negative 
activations from being taken to zero and allow the network to continue 
learning, to a lesser extent, but without pausing training; in this way, 
the CNN will daily be able to learn and will become more weighted 
over time. These are the two most commonly used activation functions 
in CNNs today (30).

4. Training a CNN
The training of a network is a process of kernel search in convo-

lution layers and weights in classification layers that minimize the 
differences between the output predictions, which are the responses of 
the CNN being trained, and the truth labels, which refer to the correct 
responses that the CNN is being trained with. In the case of radiology, 
it corresponds to the correct diagnoses of the images with which the 
CNN is being trained. Learning a CNN is an iterative process of going 
back and forth between the layers of neurons. Forward propagation is 
called forward propagation, and refers to the mathematical processes 
performed in the CNN when passing information through each layer 
of the neural network to generate an output response or prediction; 
this is then compared with the truth label and through mathematical 
processes generates what is known as the error gradient, which could 
be said to correspond mathematically to the adjustment made in the 
kernels of the convolution layers and the weights of the classification 
layers. This retrograde and feedback process that makes adjustments 
in each layer of the neural network is known as back propagation. In 
this way, if the response of the neural network is wrong, the respective 
correction will be made in the CNN (29) (Figure 10).

Forward propagation and back propagation are carried out with 
all the data, through successive iterations through the database, in this 
way, if there were 10,000 data, multiple iterations would have to be 
carried out to cover all the training data.

Once the corresponding modifications are made and enough 
iterations have been generated to cover all the databases, an epoch 
(epochs) will culminate (20). Normally, these trainings are performed 

over several epochs, i.e. they do not see the database data only once, 
but they see it as many times as necessary.

5. DL applications in radiology

5.1. Lesion detection
Several studies have evaluated the use of CNNs in the identifi-

cation of lesions in chest radiography (X-ray) with very significant 
results. Thus, for tuberculosis detection, the area under the curve 
(ABC) found was 0.99 (31); for pleural effusion, 0.96; for pulmo-
nary edema, 0.87; for consolidations, 0.85; cardiomegaly, 0.88 and 
pneumothorax, 0.86, (32, 33). Breast ultrasound-based CNN models 
have also been described for early detection of breast cancer with 
ABCs between 0.79-0.87 (34, 35).

CT-based CNN models have been proposed for the detection of 
critical findings in non-contrast CT of the skull. One study demons-
trated a model for the detection of hemorrhage, mass effect or hydro-
cephalus with a sensitivity of 90 %, specificity of 85 % and an ABC 
of 0.91 (36). On the other hand, Nakao et al. developed a method for 
aneurysm detection in MRI with a sensitivity of 70 % (37).

5.2. Segmentation of lesions
Accurate segmentation is the key to effective planning of radiothe-

rapy in head and neck cancer. Ibragimov and Xing developed a CNN 
model for fast and consistent segmentation of these structures (38). It 
is also the case of Men et al. who proposed an automatic segmentation 
using DL in rectal cancer radiotherapy planning, demonstrating high 
efficacy in terms of accuracy and speed (39).

5.3. Patient prognosis
Advances in computing, artificial intelligence and especially in 

medical image analysis have made it possible to extract quantitative data 
that allow a better oncological approach. This concept was described in 
2012 as radiomics (40, 41), and refers to the extraction of large amou-
nts of quantitative features from different medical images correlating 
them with each other to generate an optimal diagnosis, prognosis and 
treatment of cancer (42). This is the case of a DL model based on MRI 
radiomics for predicting survival in glioblastoma multiforme (43) and of 
a CNN based on chest CT to predict mortality in patients with chronic 
obstructive pulmonary disease in chronic smokers (44).

Conclusion
Medical decisions are made based on the comprehensive inter-

pretation of relevant patient data, such as signs, symptoms, laboratory 
tests and diagnostic images. DL allows the automatic extraction of 
discriminative features from high-dimensional data, therefore, it makes 
a great impact in the medical field and in particular in quantitative 
analysis (Figure 11).

There is skepticism about its accuracy and the challenges it faces, 
as well as fear that it will replace radiological or nuclear physicians; 
however, AI enables faster and more reproducible practice. Adequate 
involvement of the medical community ensures optimal technological 
development for improved quality of work life and better health care.
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