Consenso conjunto de la Asociación Colombiana de Nefrología e Hipertensión Arterial (Asocolnef) y la Asociación Colombiana de Radiología (ACR) sobre recomendaciones basadas en la evidencia de la lesión* renal aguda asociada al uso de medios de contraste yodados (LRA-MCI)

Autores/as

  • Marcelo Aguirre Caicedo Asociación Colombiana de Nefrología e Hipertensión Arterial (Asocolnef)
  • Luis Alberto Cruz Vásquez Asociación Colombiana de Radiología (ACR)
  • César Restrepo Valencia Asociación Colombiana de Nefrología e Hipertensión Arterial (Asocolnef)
  • Amaury Ariza Asociación Colombiana de Radiología (ACR)
  • Martha Edith Oyuela Mancera Asociación Colombiana de Radiología (ACR)
  • Theo Martínez Asociación Colombiana de Nefrología e Hipertensión Arterial (Asocolnef)
  • Juan Manuel Pérez Hidalgo Asociación Colombiana de Radiología (ACR).
  • Pedro Abad Díaz Asociación Colombiana de Radiología (ACR)
  • Richard Vaquero Asociación Colombiana de Nefrología Pediátrica (Asoconepe)
  • José Arnoby Chacón Universidad de Caldas. Manizales
  • Anderson Bermon Angarita Fundación Cardiovascular de Colombia. Floridablanca

DOI:

https://doi.org/10.53903/01212095.221

Palabras clave:

Lesión renal aguda, Medios de contraste, Tasa de filtración glomerular, Consenso

Resumen

Introducción: La lesión renal aguda asociada con el uso de medios de contrastes yodados (LRA-ACI) es un trastorno iatrogénico con potenciales implicaciones en morbilidad y mortalidad, motivo de preocupación en los servicios de imágenes. Los últimos años han marcado cambios importantes en la concepción que se tiene sobre esta entidad, desde una definición más precisa y su verdadera incidencia hasta el impacto real de algunas estrategias para su prevención. Objetivo: Generar recomendaciones basadas en la evidencia para el uso de medios de contraste yodados e n pacientes sometidos a procedimientos radiológicos terapéuticos y de diagnóstico, mediante un consenso de expertos. Metodología: A partir de la formulación de preguntas de investigación relacionadas con la LRA-ACI se realiza la búsqueda de evidencia en PubMed, Embase y Scopus, entre enero de 2013 y agosto de 2022. Los artículos se seleccionaron por medio de una revisión sistemática y con la metodología de consenso Delphi modificado. La calidad de los documentos se valoró aplicando instrumentos de evaluación de calidad de la evidencia de los documentos. Resultados: Se formularon 22 recomendaciones para el manejo de pacientes que requieren administración de medio de contraste yodado. Un panel de 11 expertos, entre los que se contó con 4 nefrólogos, 4 radiólogos y 1 nefrólogo pediatra, participaron en la elaboración del consenso en 5 sesiones virtuales y 15 horas de trabajo. Conclusiones: El término lesión renal aguda asociada al uso de medios de contraste yodados (LRA-ACI) debe usarse idealmente y abandonar otras definiciones que infieren una causalidad manifiesta. Su incidencia: los datos recientes demuestran que se ubica muy por debajo de lo tradicionalmente considerado. Solo una baja tasa de filtración glomerular estimada (TFGe) se considera factor de riesgo independiente. Respecto a su prevención, únicamente la hidratación ha mostrado un potencial beneficio como medida nefroprotectora.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Mehran R et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393-9. doi: 10.1016/j.jacc.2004.06.068.

Stacul F et al. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol. 2011;21(12):2527-41. doi: 10.1007/s00330-011-2225-0. 3. Slocum NK et al. The changing definition of contrast-induced nephropathy and its clinical implications: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). Am Heart J. 2012;163(5):829-34. doi: 10.1016/j.ahj.2012.02.011.

Lameire NH et al. Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2021;100(3):516-26. doi: 10.1016/j.kint.2021.06.028.

Azzalini L, Spagnoli V, Ly Q. Contrast-induced nephropathy: From pathophysiology to preventive strategies. Can J Cardiol. 2016;32(2):247-55. doi: 10.1016/j.cjca.2015.05.013.

Macdonald DB et al. Canadian Association of Radiologists Guidance on Contrast-Associated Acute Kidney Injury. Can J Kidney Health Dis. 2022;9: 20543581221097456.doi: 10.1177/20543581221097455.

Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT. Hospital-acquired renal insufficiency: a prospective study. Am J Med. 1983;74(2):243-8. doi: 10.1016/0002- 9343(83)90618-6.

McDonald RJ et al. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology. 2013;267(1):106-18. doi: 10.1148/radiol.12121823.

Newhouse JH, Kho D, Rao QA, Starren J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity, AJR Am J Roentgenol. 2008;191(2):376-82. doi: 10.2214/AJR.07.3280.

Bruce RJ, Djamali A, Shinki K, Michel SJ, Fine JP, Pozniak MA. Background fluctuation of kidney function versus contrast-induced nephrotoxicity. AJR Am J Roentgenol.2009;192(3):711-8. doi: 10.2214/AJR.08.1413.

Rao QA, Newhouse JH. Risk of nephropathy after intravenous administration of contrast material: a critical literature analysis. Radiology. 2006;239(2):392-7. doi:10.1148/radiol.2392050413.

E. Wilhelm-Leen, M. E. Montez-Rath, and G. Chertow, Estimating the Risk of Radiocontrast-Associated Nephropathy, J Am Soc Nephrol. 2017;28(2):653-9. doi:10.1681/ASN.2016010021.

Cramer BC et al. Renal function following infusion of radiologic contrast material. A prospective controlled study. Arch Intern Med. 1985;145(1):87-9.

Heller CA, Knapp J, Halliday J, O’Connell D, Heller RF. Failure to demonstrate contrastnephrotoxicity. Med J Aust. 1991;155(5):329-32. doi: 10.5694/j.1326-5377.1991.tb142293.x.

Patorno E, Grotta A, Bellocco R, Schneeweiss S. Propensity score methodology for confounding control in health care utilization databases. Epidemiol, Biostatist Public Health. 2013;10(3):e8940-1,e8940-16. doi: 10.2427/8940.

Davenport MS, Khalatbari S, Cohan RH, Dillman JR, Myles JD, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology.2013;268(3):719-28. doi: 10.1148/radiol.13122276.

Davenport MS et al. Use of Intravenous iodinated contrast media in patients with kidney disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Radiology. 2020;294(3):660-8. doi: 10.1148/radiol.2019192094.

Davenport MS et al. Use of Intravenous iodinated contrast media in patients with kidney disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2020;2(1):85-93. doi: 10.1016/j.xkme.2020.01.001.

Ehmann MR et al. Renal outcomes following intravenous contrast administration in patients with acute kidney injury: a multi-site retrospective propensity-adjusted analysis. Intensive Care Med. 2023. doi: 10.1007/s00134-022-06966-w.

International Society of Nephrology. Kidney International supplements. Official J The International Society of Nephrology. 2013;3(1):163. doi: 10.1038/kisup.2012.74.

Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41. doi: 10.1159/000180580.

Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine): a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999; 130(6):461-70. doi: 10.7326/0003-4819-130-6-199903160-00002.

Levey A, Greene T, Kusek JW, Beck G. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol. 2011;11:155A.

Zuo L, Ma YC, Zhou YH, Wang M, Xu GB, Wang HY. Application of GFR-estimating equations in Chinese patients with chronic kidney disease. Am J Kidney Dis. 2005;45(3):463-72. doi: 10.1053/j.ajkd.2004.11.012.

Levey AS et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12. doi: 10.7326/0003-4819-150-9-200905050-00006.

Delgado C, et al. A unifying approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis. 2022;79(2):268-88.e1. doi: 10.1053/j.ajkd.2021.08.003.

McDonald JS, McDonald RJ, Carter RE, Katzberg RW, Kallmes DF, Williamson EE. Risk of intravenous contrast material-mediated acute kidney injury: a propensity scorematched study stratified by baseline-estimated glomerular filtration rate. Radiology.2014;271(1):65-73. doi: 10.1148/radiol.13130775.

Ellis JH, Khalatbari S, Yosef M, Cohan RH, Davenport MS. Influence of Clinical Factors on Risk of Contrast-Induced Nephrotoxicity From IV Iodinated Low-Osmolality Contrast Material in Patients With a Low Estimated Glomerular Filtration Rate. AJR Am J Roentgenol. 2019;213(5):W188-93. doi: 10.2214/AJR.19.21424.

Moore RD, et al. Nephrotoxicity of high-osmolality versus low-osmolality contrast media): randomized clinical trial. Radiology. 1992;182(3):649-55. doi: 10.1148/ radiology.182.3.1535876.

Pannu N, Wiebe N, Tonelli M, Alberta Kidney Disease Network. Prophylaxis strategies for contrast-induced nephropathy. JAMA. 2006;295(23):2765-79. doi: 10.1001/ jama.295.23.2765.

Lautin EM, et al. Radiocontrast-associated renal dysfunction): a comparison of lowerosmolality and conventional high-osmolality contrast media. AJR Am J Roentgenol. 1991;157(1):59-65. doi: 10.2214/ajr.157.1.2048540.

Eng J, et al. Comparative Effect of Contrast Media Type on the Incidence of Contrast- Induced Nephropathy): A Systematic Review and Meta-analysis. Ann Intern Med. 2016;164(6):417-24. doi: 10.7326/M15-1402.

Seeliger E, Lenhard DC, Persson PB. Contrast media viscosity versus osmolality in kidney injury: lessons from animal studies. Biomed Res Int. 2014;358136. doi:10.1155/2014/358136.

Seeliger E, et al. Viscosity of contrast media perturbs renal hemodynamics. J Am Soc Nephrol. 2007;18(11):2912-20. doi: 10.1681/ASN.2006111216.

Van der Molen AJ, et al. Post-contrast acute kidney injury - Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2018;28(7):2845-55. doi: 10.1007/s00330-017-5246-5.

Nyman U, Almén T, Jacobsson B, Aspelin P. Are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections? Eur Radiol. 2012;22(6):1366- 71. doi: 10.1007/s00330-011-2371-4.

Jurado-Román A, et al. Role of hydration in contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Am J Cardiol. 2015;115(9):1174-78. doi: 10.1016/j.amjcard.2015.02.004.

McDonald RJ, et al. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology. 2014;273(3):714-25. doi: 10.1148/ radiol.14132418.

Taliercio CP, Vlietstra RE, Fisher LD, Burnett JC. Risks for renal dysfunction with cardiac angiography. Ann Intern Med. 1986;104(4):501-4. doi: 10.7326/0003-4819- 104-4-501.

Marenzi G, et al. Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann Intern Med. 2009;150(3):170-7. doi: 10.7326/0003-4819-150-3-200902030-00006.

Bartholomew BA, et al. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol. 2004;93(12):1515-9. doi:10.1016/j.amjcard.2004.03.008.

Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol. 2013;61(22):2242-8. doi: 10.1016/j.jacc.2013.03.026.

Gao Y, Li D, Cheng H, Chen Y. Derivation and validation of a risk score for contrastinduced nephropathy after cardiac catheterization in Chinese patients. Clin Exp Nephrol. 2014;18(6):892-8. doi: 10.1007/s10157-014-0942-9.

Tziakas D, et al. Validation of a new risk score to predict contrast-induced nephropathy after percutaneous coronary intervention. Am J Cardiol. 2014;113(9):1487-93. doi: 10.1016/j.amjcard.2014.02.004.

Lin KY, et al. A novel risk score model for prediction of contrast-induced nephropathy after emergent percutaneous coronary intervention. Int J Cardiol. 2017;(230):402-12. doi: 10.1016/j.ijcard.2016.12.095.

Pasquel FJ, et al. Metformin-associated lactic acidosis. Am J Med Sci. 2015;349(3):263-7. doi: 10.1097/MAJ.0b013e3182a562b7.

Boada Fernández Del Campo C, et al. Metformin-associated hyperlactacidaemia acidosis): Diagnosis rate in standard clinical practice and its relationship with renal failure. Rev Clin Esp (Barc). 2019;219(5):236-42. doi: 10.1016/j.rce.2018.11.006.

Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;(4):CD002967. doi: 10.1002/14651858.CD002967.pub4.

Richy FF, Sabidó-Espin M, Guedes S, Corvino FA, Gottwald-Hostalek U. Incidence of lactic acidosis in patients with type 2 diabetes with and without renal impairment treated with metformin: a retrospective cohort study. Diabetes Care. 2014;37(8):2291- 5. doi: 10.2337/dc14-0464.

Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014;312(24):2668- 75. doi: 10.1001/jama.2014.15298.

Lu WR, Defilippi J, Braun A. Unleash metformin: reconsideration of the contraindication in patients with renal impairment. Ann Pharmacother. 2013;47(11):1488-97. doi: 10.1177/1060028013505428.

Chronic Kidney Disease Prognosis Consortium et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073-81. doi: 10.1016/S0140-6736(10)60674-5.

Bhandari S, et al. Multicentre randomized controlled trial of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker withdrawal in advanced renal disease: the STOP-ACEi trial. Nephrol Dial Transplant. 2016;31(2):255-61. doi: 10.1093/ndt/gfv346.

Qiao Y, et al. Association Between Renin-Angiotensin System Blockade Discontinuation and All-Cause Mortality Among Persons With Low Estimated Glomerular Filtration Rate. JAMA Intern Med. 2020;180(5):718-26. doi: 10.1001/jamainternmed. 2020.0193.

Walther CP, Winkelmayer WC, Richardson PA, Virani SS, Navaneethan SD. Reninangiotensin system blocker discontinuation and adverse outcomes in chronic kidney disease. Nephrol Dial Transplant. 2021;36(10):1893-9. doi: 10.1093/ndt/gfaa300.

Fu EL, et al. Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of Adverse Outcomes: A Nationwide Study. J Am Soc Nephrol. 2021;32(2):424-35. doi: 10.1681/ASN.2020050682.

Nakayama T, et al. Effects of renin-angiotensin system inhibitors on the incidence of unplanned dialysis. Hypertens Res. 2022;45(6):1018-27. doi: 10.1038/s41440-022- 00877-5.

Whiting P, et al. What are the risks and benefits of temporarily discontinuing medications to prevent acute kidney injury? A systematic review and meta-analysis. BMJ Open. 2017;7(4):e012674. doi: 10.1136/bmjopen-2016-012674.

Perner A, Prowle J, Joannidis M, Young P, Hjortrup PB, Pettilä V. Fluid management in acute kidney injury. Intensive Care Med. 2017;43(6):807-15. doi: 10.1007/s00134-017-4817-x.

Perico N, Codreanu I, Schieppati A, Remuzzi G. The future of renoprotection. Kidney Int Suppl. 2005;(97):S95-101. doi: 10.1111/j.1523-1755.2005.09716.x.

Schieppati A, Remuzzi G. The June 2003 Barry M. Brenner Comgan lecture. The future of renoprotection: frustration and promises. Kidney Int. 2003;64(6):1947-55. doi: 10.1046/j.1523-1755.2003.00340.x.

Taylor AJ, Hotchkiss D, Morse RW, McCabe J. PREPARED: Preparation for Angiography in Renal Dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest. 1998;114(6):1570-4. doi: 10.1378/chest.114.6.1570.

Dussol B, Morange S, Loundoun, A, Auquier P, Berland Y. A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol Dial Transplant. 2006;21(8):2120-6. doi: 10.1093/ndt/gfl133.

Weisbord SD, et al. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N Engl J Med. 2018;378(7):603-14. doi: 10.1056/NEJMoa1710933.

Mueller C, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med. 2002;162(3):329-36. doi: 10.1001/archinte.162.3.329.

Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331(21):1416-20. doi: 10.1056/NEJM199411243312104.

Merten GJ, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;291(19):2328-34. doi: 10.1001/ jama.291.19.2328.

Hiremath S, Akbari A, Shabana W, Fergusson DA, Knoll GA. Prevention of contrastinduced acute kidney injury: is simple oral hydration similar to intravenous? A systematic review of the evidence. PLoS One. 2013;8(3):e60009. doi: 10.1371/journal. pone.0060009.

Nijssen EC, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312-22. doi: 10.1016/S0140-6736(17)30057-0.

Liu Y, et al. Effects of intravenous hydration on risk of contrast induced nephropathy and in-hospital mortality in STEMI patients undergoing primary percutaneous coronary intervention: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2019;19(1):87. doi: 10.1186/s12872-019-1054-y.

Timal RJ, et al. Effect of No Prehydration vs Sodium Bicarbonate Prehydration Prior to Contrast-Enhanced Computed Tomography in the Prevention of Postcontrast Acute Kidney Injury in Adults With Chronic Kidney Disease: The Kompas Randomized Clinical Trial. JAMA Intern Med. 2020;180(4):533-41. doi: 10.1001/jamainternmed. 2019.7428.

DiMari J, Megyesi J, Udvarhelyi N, Price P, Davis R, Safirstein R. N-acetyl cysteine ameliorates ischemic renal failure. Am J Physiol. 1997;272(3 Pt 2):F292-8. doi: 10.1152/ajprenal.1997.272.3.F292.

Magner K, Ilin JV, Clark EG, Kong JW, Davis A, Hiremath S. Meta-analytic Techniques to Assess the Association Between N-acetylcysteine and Acute Kidney Injury After Contrast Administration: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(7):e2220671. doi: 10.1001/jamanetworkopen.2022.20671.

Gonzáles DA, et al. A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity): unsupervised clustering to resolve heterogeneity. BMC Med. 2007;5:32. doi: 10.1186/1741-7015-5-32.

Zagler A, Azadpour M, Mercado C, Hennekens CH. N-acetylcysteine and contrast- induced nephropathy: a meta-analysis of 13 randomized trials. Am Heart J. 2006;151(1):140-5. doi: 10.1016/j.ahj.2005.01.055.

Fishbane S. N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol. 2008;3(1):281-7. doi: 10.2215/CJN.02590607.

Kroll MH, Roach NA, Poe B, Elin RJ. Mechanism of interference with the Jaffé reaction for creatinine. Clin Chem. 1987;33(7):1129-32.

McCudden C, Clark EG, Akbari A, Kong J, Kanji S, Hiremath S. N-Acetylcysteine Interference With Creatinine Measurement: An In Vitro Analysis. Kidney Int Rep. 2021;6(7):1973-6. doi: 10.1016/j.ekir.2021.04.006.

Baker CSR, Wragg A, Kumar S, De Palma R, Baker LRI, Knight CJ. A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study. J Am Coll Cardiol. 2003;41(12):2114-8. doi: 10.1016/s0735-1097(03)00487-x.

Li H, Wang C, Liu C, Li R, Zou M, Cheng G. Efficacy of Short-Term Statin Treatment for the Prevention of Contrast-Induced Acute Kidney Injury in Patients Undergoing Coronary Angiography/Percutaneous Coronary Intervention: A Meta-Analysis of 21 Randomized Controlled Trials. Am J Cardiovasc Drugs. 2016;16(3):201-19. doi: 10.1007/s40256-016-0164-5.

Su X, et al. Comparative Effectiveness of 12 Treatment Strategies for Preventing Contrast-Induced Acute Kidney Injury: A Systematic Review and Bayesian Network Meta-analysis. Am J Kidney Dis. 2017;69(1):69-77. doi: 10.1053/j.ajkd.2016.07.033.

Briasoulis A, Mallikethi-Reddy S, Sharma S, Briasouli AA, Afonso L. 3-Hydroxy- 3-methylglutaryl-CoA reductase enzyme inhibitors for prevention of contrast-induced nephropathy: a meta-analysis of prospective randomized controlled studies. Am J Ther. 2015;22(6):e158-66. doi: 10.1097/MJT.0000000000000126.

Toso A, et al. Usefulness of atorvastatin (80 mg) in prevention of contrast-induced nephropathy in patients with chronic renal disease. Am J Cardiol. 2010;105(3):288-92. doi: 10.1016/j.amjcard.2009.09.026.

Subramaniam RM, et al. Effectiveness of Prevention Strategies for Contrast- Induced Nephropathy): A Systematic Review and Meta-analysis. Ann Intern Med. 2016;164(6):406-16. doi: 10.7326/M15-1456.

Bagshaw SM, Ghali WA. Theophylline for prevention of contrast-induced nephropathy): a systematic review and meta-analysis. Arch Intern Med. 2005;165(10):1087- 93. doi: 10.1001/archinte.165.10.1087.

Sadat U, Usman A, Gillard JH, Boyle JR. Does ascorbic acid protect against contrastinduced acute kidney injury in patients undergoing coronary angiography: a systematic review with meta-analysis of randomized, controlled trials. J Am Coll Cardiol.2013;62(23):2167-75. doi: 10.1016/j.jacc.2013.07.065.

Martha JW, Pranata R, Wibowo A, Irvan I, Afrianti R, Akbar MR. The effect of trimetazidine on contrast-induced nephropathy in patients undergoing coronary angiography and/or percutaneous coronary intervention - A systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2021;25(7):3045-53. doi: 10.26355/eurrev_202104_25558.

Bellos I, Iliopoulos DC, Perrea DN. Allopurinol Administration for the Prevention of Contrast-Induced Nephropathy: A Network Meta-analysis With Trial Sequential Analysis. J Cardiovasc Pharmacol. 2019;73(5):307-15. doi: 10.1097/ FJC.0000000000000663.

Geng N, et al. Prostaglandin E1 administration for prevention of contrast-induced acute kidney injury: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2018;97(29):e11416. doi: 10.1097/MD.0000000000011416.

Marenzi G, Bartorelli L. Recent advances in the prevention of radiocontrastinduced nephropathy. Curr Opin Crit Care. 2004;10(6):505-9. doi: 10.1097/01. ccx.0000145098.13199.e8.

Monami M, et al. Alpha-tocopherol and contrast-induced nephropathy: A meta-analysis of randomized controlled trials. Int J Vitam Nutr Res. 2021;91(1-2):188-96. doi: 10.1024/0300-9831/a000573.

Ma X, Li X, Jiao Z, Zhang Y. Nicorandil for the prevention of contrast-induced nephropathy): A meta-analysis of randomized controlled trials. Cardiovasc Ther. 2018;36(2). doi: 10.1111/1755-5922.12316.

Majumdar SR, Kjellstrand CM, Tymchak WJ, Hervas-Malo M, Taylor DA, Teo KK. Forced euvolemic diuresis with mannitol and furosemide for prevention of contrastinduced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis. 2009;54(4):602-9. doi: 10.1053/j. ajkd.2009.03.024.

Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29(8):1526-31. doi: 10.1097/00003246-200108000-00005. 95. Mohamed H, Al-Shimaa M, Lobna A. Ginger extract protect Iodinated Contrast Media Nephrotoxicity in rats through modulation of Oxidative Stress, Cystain C, NGAL and TNF α. Res J Pharmacy Technol. 2018;11(12):5439-8. doi: 10.5958/0974- 360X.2018.00992.7.

Nasri H, et al. Ameliorative effect of green tea against contrast-induced renal tubular cell injury. Iran J Kidney Dis. 2015;9(6):421-6.

Liang R, et al. Tanshinone IIA Attenuates Contrast-Induced Nephropathy via Nrf2 Activation in Rats. Cell Physiol Biochem. 2018;46(6):2616-23. doi: 10.1159/000489688.

Sedighifard Z, Roghani F, Bidram P, Harandi SA, Molavi S. Silymarin for the Prevention of Contrast-Induced Nephropathy: A Placebo-Controlled Clinical Trial. Int J Prev Med. 2016;7:23. doi: 10.4103/2008-7802.174762.

Buyuklu M, Kandemir FM, Ozkaraca M, Set T, Bakirci EM, Topal E. Protective effect of curcumin against contrast induced nephropathy in rat kidney: what is happening to oxidative stress, inflammation, autophagy and apoptosis? Eur Rev Med Pharmacol Sci. 2014;18(4):461-70.

Huang YT, et al. Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro. Int J Mol Med. 2016;37(1):83-91.doi: 10.3892/ijmm.2015.2404.

Topaloğlu US, et al. Effects of thymoquinone in prevention of experimental contrastinduced nephropathy in rats. Iran J Basic Med Sci. 2019;22(12):1432-9. doi: 10.22038/ IJBMS.2019.13990.

Rodby RA. Preventing complications of radiographic contrast media: is there a role for dialysis? Semin Dial. 2007;20(1):19-23. doi: 10.1111/j.1525-139X.2007.00233.x.

Cruz DN, Goh CY, Marenzi G, Corradi V, Ronco C, Perazella MA. Renal replacement therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Med. 2012;125(1):66-78.e3. doi: 10.1016/j.amjmed.2011.06.029.

Susantitaphong P, Eiam-Ong S. Nonpharmacological strategies to prevent contrastinduced acute kidney injury. Biomed Res Int. 2014:463608. doi: 10.1155/2014/463608.

Deray G. Dialysis and iodinated contrast media. Kidney Int Suppl. 2006;(100):S25-29. doi: 10.1038/sj.ki.5000371.

Shemin D, Bostom AG, Laliberty P, Dworkin LD. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis. 2001;38(1):85-90. doi: 10.1053/ ajkd.2001.25198.

van der Wal WM, et al. Full loss of residual renal function causes higher mortality in dialysis patients; findings from a marginal structural model. Nephrol Dial Transplant. 2011;26(9):2978-83. doi: 10.1093/ndt/gfq856.

Mathew AT, Fishbane S, Obi Y, Kalantar-Zadeh K. Preservation of residual kidney function in hemodialysis patients: reviving an old concept. Kidney Int. 2016;90(2):262-71. doi: 10.1016/j.kint.2016.02.037.

Oloko A, et al. Does Iodinated Contrast Affect Residual Renal Function in Dialysis Patients? A Systematic Review and Meta-Analysis. Nephron. 2020;144(4):176-84. doi: 10.1159/000505576.

Abujudeh HH, Gee MS, Kaewlai R. In emergency situations, should serum creatinine be checked in all patients before performing second contrast CT examinations within 24 hours? J Am Coll Radiol. 2009;6(4):268-73. doi: 10.1016/j.jacr.2008.09.014.

Trivedi H, Foley WD. Contrast-induced nephropathy after a second contrast exposure. Ren Fail. 2010;32(7):796-801. doi: 10.3109/0886022X.2010.495441.

Lee SR, Dardik A, Ochoa Chaar CI. Postcontrast Acute Kidney Injury after Peripheral Vascular Interventions in Kidney Transplant Recipients. Ann Vasc Surg. 2020;(68):8- 14. doi: 10.1016/j.avsg.2020.04.057.

Rihal CS, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105(19):2259-64. doi: 10.1161/01. cir.0000016043.87291.33.

Bedoya MA, White AM, Edgar JC, Pradhan M, Raab EL, Meyer JS. Effect of Intravenous Administration of Contrast Media on Serum Creatinine Levels in Neonates. Radiology. 2017;284(2):530-40. doi: 10.1148/radiol.2017160895.

Cantais A, et al. Incidence of contrast-induced acute kidney injury in a pediatric setting: a cohort study. Pediatr Nephrol. 2016;31(8):1355-62. doi: 10.1007/s00467-016-3313-9.

Standen JR, Nogrady MB, Dunbar JS, Goldbloom RB. The osmotic effects of methylglucamine diatrizoate (renografin 60) in intravenous urography in infants. Am J Roentgenol Radium Ther Nucl Med. 1965;(93):473-9.

Morris TW, Harnish PP, Reece K, Katzberg RW. Tissue fluid shifts during renal arteriography with conventional and low osmolality agents. Invest Radiol. 1983;18(4):335-40. doi: 10.1097/00004424-198307000-00008.

Trout AT, Dillman JR, Ellis JH, Cohan RH, Strouse PJ. Patterns of intravenous contrast material use and corticosteroid premedication in children--a survey of Society of Chairs of Radiology in Children’s Hospitals (SCORCH) member institutions. Pediatr Radiol. 2011;41(10):1272-83. doi: 10.1007/s00247-011-2112-5.

Amaral JG, Traubici J, BenDavid G, Reintamm G, Daneman A. Safety of power injector use in children as measured by incidence of extravasation. AJR Am J Roentgenol. 2006;187(2):580-3. doi: 10.2214/AJR.05.0667.

Cohen MD. Safe use of imaging contrast agents in children. J Am Coll Radiol. 2009;6(8):576-81. doi: 10.1016/j.jacr.2009.04.003.

Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58(2):259-63.

Publicado

2022-06-30

Cómo citar

(1)
Aguirre Caicedo, M.; Cruz Vásquez, L. A.; Restrepo Valencia, C.; Ariza, A.; Oyuela Mancera, M. E.; Martínez, T.; Pérez Hidalgo, J. M.; Abad Díaz, P.; Vaquero, R.; Arnoby Chacón, J. Consenso Conjunto De La Asociación Colombiana De Nefrología E Hipertensión Arterial (Asocolnef) Y La Asociación Colombiana De Radiología (ACR) Sobre Recomendaciones Basadas En La Evidencia De La lesión* Renal Aguda Asociada Al Uso De Medios De Contraste Yodados (LRA-MCI). Rev. colomb. radiol. 2022, 33, 5728-5756.

Número

Sección

Artículos de investigación
Crossref Cited-by logo
QR Code