Convolutional neural networks, a model for deep learning in diagnostic imaging. A topic review

Authors

  • Federico Lubinus Badillo Clinica FOSCAL, Bucaramanga
  • César Andrés Rueda Hernández Universidad Autónoma de Bucaramanga
  • Boris Marconi Narváez Universidad Autónoma de Bucaramanga
  • Yhary Estefanía Arias Trillos Universidad Autónoma de Bucaramanga

DOI:

https://doi.org/10.53903/01212095.161

Keywords:

Artificial intelligence, Deep learning, Radiology

Abstract

Advances in artificial intelligence have impacted several areas of everyday life, as well as in the area of medicine. Due to the rapid application of deep learning in biomedical data, radiological and nuclear imaging has begun to adopt this technique. Deep learning is expected to have an effect on the process of image acquisition and interpretation, as well as on decision making. This review first provides an overview of the basic concepts and operation of convolutional neural networks, as well as current insights into the medical application focused on diagnostic imaging.

Downloads

Download data is not yet available.

References

Hricak H. New horizons lecture: beyond imaging—radiology of tomorrow. Radiology. 2018;286(3):764-75.

Soffer S, Ben-Cohen A, Shimon O, Amitai M, Greenspan H, Klang E. Convolutional neural networks for radiologic images: A Radiologist’s Guide Shelly. Radiology. 2019;290(3):590-606.

Fukushima K, Miyake S. Neocognitron: a new algorithm for pat- tern recognition tolerant of deformations and shifts in position. Pattern Recognit. 1982;15(6):455-69.

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional archi¬tecture in the cat’s visual cortex. J Physiol. 1962;160(1):106-54.

Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. NIPS’12. 2012;1:1097-105.

Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.

Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists. RadioGraphics. 2017;37(7):2113-31.

Wang F, Casalino L, Khullar D. Deep learning in medicine. Promise, progress, and challenges. JAMA Intern Med. 2019;179(3):293-4.

Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402-10.

Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-8.

Baback EB, Mitko V, Paul J D, et al. Diagnostic assessment of deep learning algo¬rithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199-210.

Dreyer KJ, Geis JR. When machines think: radiology’s next frontier. Radiology. 2017;285(3):713-8.

Shiraishi J, Li Q, Suzuki K, et al. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: Localized search method based on anatomical classification. Medical Physics. 2006;33:2642-53.

Arimura H, Katsuragawa S, Suzuki K, et al. Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening1. Acad Radiol. 2004;11(6):617-29.

Shah SK, McNitt-Gray MF, Rogers SR, et al. Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features1. Acad Radiol. 2005;12(10):1310-9.

Delogu P, Evelina FM, Kasae P, et al. Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier. Comp Biol Med. 2007;37(10):1479-91

Giger ML. Update on the potential of computer-aided diagnosis for breast cancer. Future Oncol. 2010;6(1):1-4.

Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668-79.

Cadieu CF, Hong H, Yamins DLK, et al. Deep neural networks rival the representation of primate it cortex for core visual object recognition. PLOS Comp Biol. 2014;10.

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.

Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211-52.

Graham B. Fractional max-pooling. Cornell University Library arXiv. 2015.

Lee CY, Gallagher PW, Tu Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. Cornell University Library arXiv. 2015.

Yasaka K, Akai H, Kunimatsu A, et al. Deep learning with convolutional neural network in radiology. Japan J Radiol. 2018;36(4):257-72.

Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. IEEE.1998;86:2278-324.

Simonyan K, Zisserman A. Deep convolutional networks for large-scale image recognition. Cornell University Library arXiv.2014.

Alom M Z, Taha T M, Yakopcic C, et al. A state-of-the-art survey on deep learning theory and architectures. Electronics. 2019;8(3).

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-80.

Yamashita R, Nishio M, Do RKG, et al. Convolutional neural networks: an overview and application in radiology. Insights Imag. 2018;9:611-29.

Yang L, Chunxiao F, Yong L, et al. Improving deep neural network with multiple parametric exponential linear units. Cornell University Library arXiv. 2017.

Lakhani P, Sundaram B. Deep learning at chest radiography: automated classifcation of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574-82.

Cicero M, Bilbily A, Colak E, et al. Training and validating a deep convolutional neural network for computer aided detection and classifcation of abnormalities on frontal chest radiographs. Invest Radiol. 2017;52(5):281-7

Aoyama M, Li Q, Katsuragawa S, et al. Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images. Medical Physics. 2003;30(3):387-94.

Becker AS, Marcon M, Ghafoor S, et al. Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol. 2017;52(7): 434-40.

Kooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017;35:303-12.

Prevedello LM, Erdal BS, Ryu JL, et al. Automated critical test fndings identifcation and online notifcation system using artifcial intelligence in imaging. Radiology. 2017;285(3):923-31.

Nakao T, Hanaoka S, Nomura Y, et al. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Mag Reson Imag. 2018;47(4):948-53.

Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Medical Physics. 2017;44(2):547-57.

Men K, Dai J, Li Y. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Medical Physics. 2017;44(12):6377-89.

Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012.

Lambin P, Ríos-Velázquez E, Leijenaar R, et al. Radiomics: extracting more in¬formation from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441-6.

Aerts HJ, Velázquez ER, Leijenaar RT, et al. Decoding tumour phenotype by nonin¬vasive imaging using a quantitative radiomics approach. Nat Commun. 2014.

Lao J, Chen Y, Li ZC, et al. A deep learn- ing-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep. 2017;7(1).

González G, Ash SY, Vegas Sánchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2018;197(2):193-203.

Published

2021-09-30

How to Cite

(1)
Lubinus Badillo, F. .; Rueda Hernández, C. A. .; Marconi Narváez, B. .; Arias Trillos, Y. E. . Convolutional Neural Networks, a Model for Deep Learning in Diagnostic Imaging. A Topic Review. Rev. colomb. radiol. 2021, 32, 5591-5599.

Issue

Section

Revisión de Tema
Crossref Cited-by logo
QR Code